Single-stream processing technique for in situ polymerization of glass fiber/polyamide-6 laminates

Author:

Barfknecht Peter W1,Martin Justin2,Pillay Brian1,Vaidya Uday K1,Gray Gary M2

Affiliation:

1. Materials Science and Engineering, University of Alabama at Birmingham, Birmingham, AL, USA

2. Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA

Abstract

Ring-opening polymerization of anionic polyamide-6 (APA-6) requires both an activator and an initiator for the reaction to occur. Typical processing techniques for liquid-molded thermoplastic composite laminates involve infusion of the reinforcement with a premixed monomer solution containing both activator and initiator species. The technique described here is a step toward simplification and automation of the in situ polymerization process for composite laminates. By depositing the initiation functional group onto the reinforcement, infusion of a single stream of inert monomer solution is possible. The technique simplifies the processing equipment required and reduces the risk of contamination. Two separate methodologies derived from a silane and a diisocyanate were investigated. The soluble diisocyanate method was used to successfully demonstrate the single-stream APA-6 processing technique. Glass fiber surface-initiated polymerization was also demonstrated using the silane-derived initiator. The findings represent the first steps toward a new processing paradigm of APA-6 composites.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3