Multi material 3D printing of PLA-PA6/TiO2 polymeric matrix: Flexural, wear and morphological properties

Author:

Kumar Sudhir1ORCID,Singh Rupinder23ORCID,Singh Mohit3ORCID,Singh TP1,Batish Ajay1

Affiliation:

1. Department of Mechanical Engineering, Thapar Institute of Engineering and Technology, Patiala, Punjab, India

2. Department of Mechanical Engineering, National Institute of Techanical Teachers Training and Research, Chandigarh, India

3. Department of Production Engineering, Guru Nanak Dev Engg. College, Ludhiana, Punjab, India

Abstract

The poly-lactic acid (PLA), bio compatible polyamide (PA6) and TiO2 has established bio-medical applications especially in 3D printing of scaffolds. But hitherto little has been reported on improving the performance of multi-material matrix for PLA-PA6/TiO2 especially in 3D printing application of biomedical scaffolds. The anti-bacterial properties of PA6/TiO2 make it worthy to be explored with PLA matrix in multi layered fashion on the platform of fused deposition modeling (FDM) being low cost 3D printing technology for in house development of scaffolds. In this work an effort has been made for in-house development of feedstock filaments of PLA and PA6/TiO2 based polymeric composite matrix on twin screw extrusion (TSE) machine. Further the feedstock filament wires were used on FDM to establish the flexural, wear and morphological properties of multi-material 3D printed functional prototype. The results of the study suggest that for flexural strength, infill speed: 90mm/s; infill pattern: triangular and layer combination as 5 consecutive layers of PLA and 5 consecutive layers of PA6/TiO2 are the optimized conditions for FDM printing. The wear testing results suggest that the composite of PA6/TiO2 held low wear rate (823 µm) in comparison to PLA (wear rate: 1092 µm). Further porosity testing (based upon optical photomicrographs) at ×100 and fractured surface analysis at ×30 supported the observed trends for flexural and wear testing. The photomicrographs of fractured surface were 3D rendered to predict the role of surface roughness (Ra) profile for flexural properties. The mechanical and morphological observations are also supported with scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) analysis.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3