Effect of printing characteristics for the incorporation of hexagonal-shaped lattice structure on the PLA polymeric material

Author:

Palaniyappan Sabarinathan1,Veeman Dhinakaran1ORCID,Narain Kumar S1,Surendhar G J1,Natrayan L2

Affiliation:

1. Chennai Institute of Technology, Chennai, Tamil Nadu, India

2. Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India

Abstract

Additive manufacturing is an emerging technique for manufacturing 3-D objects from the design of the component. Lattice structures are incorporated in metal and polymeric materials and find various applications in aerospace, marine, and other engineering fields. The present research work concentrates on incorporating hexagonal-shaped lattice structures through the fused deposition modeling (FDM) technique. The optimization was carried out by varying the printing process parameters such as infill density (80%, 90%, and 100%), layer thickness (0.1 mm, 0.2 mm, and 0.3 mm), and printing temperature (195°C, 205°C, and 215°C). The impact of printing parameters with respect to the quality characteristics responses such as tensile strength/density and dimensional area error can be considered for the optimization process. The samples are prepared using an L9 orthogonal array, and the process condition was optimized using the Taguchi optimization technique. The tensile strength/density is observed to be higher at a lower infill density of about 80%, a minimum layer height of 0.1 mm, and a maximum extrusion temperature of 215°C. From the ANOVA analysis results, the influential parameters sequence for the tensile strength/density was infill density > layer thickness > printing temperature. And the sequence of effective parameters for obtaining the lowest dimensional area error was infill density > printing temperature > layer thickness. Therefore, this research has found the application for incorporating hexagonal-shaped lattice structure in the PLA material. The material is capable of structural applications in automotive and marine applications, etc.

Funder

Chennai Institute of Technology

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3