Determination of convective heat transfer coefficient for hot gas torch (HGT)-assisted automated fiber placement (AFP) for thermoplastic composites

Author:

Zacherl Lorenz12,Shadmehri Farjad23,Rother Klemens1ORCID

Affiliation:

1. Faculty for Mechanical Engineering, University of Applied Sciences Munich, Munchen, Bayern, Germany

2. Concordia Centre for Composites, Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, Quebec, Canada

3. Research Center for High Performance Polymer and Composite Systems (CREPEC), Montreal, Quebec, Canada

Abstract

In-situ manufacturing of thermoplastic composites using the automated fiber placement (AFP) process consists of heating, consolidation and solidification steps. During the heating step using hot gas torch (HGT) as a moving heat source, the incoming tape and the substrate are heated up to a temperature above the melting point of the thermoplastic matrix. The convective heat transfer occurs between the hot gas flow and the composites in which the convective heat transfer coefficient h plays an important role in the heat transfer mechanism which in turn significantly affects temperature distribution along the length, width and through the thickness of the deposited layers. Temperature is the most important process parameter in AFP in-situ consolidation that affects bonding quality, crystallization and consolidation. Although it is well known the convective heat transfer coefficient h is not constant and has a distribution, most studies have assumed a constant value for h for heat transfer analysis which leads to discrepancy between numerical and experimental results. In this study a new function is proposed to approximate the distribution of the convective heat transfer coefficient h in the vicinity of the nip point. Using the proposed convective heat transfer coefficient distribution, a three-dimensional finite element transient heat transfer analysis is performed to predict temperature distribution in the composite parts. An optimization loop is employed to find the free parameters of the distribution function so that the predicted temperature match experimental data. It is shown that, unlike other studies assuming constant h value, not only maximum temperature can be well predicted, but also predicted heating and cooling curves agree well with experimental results. The cooling rate is of significant importance in crystallization behavior and residual stress calculation.

Funder

Mitacs Globalink Research Award

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3