Affiliation:
1. Materials Science and Engineering Department University of Michigan Ann Arbor, MI 48109, USA
Abstract
The prediction of stiffness in short fiber reinforced thermoplastics is stud ied as a function of fiber length using injection molded blends of PS and PPO. The theoret ical models for predicting composite stiffness are reviewed. The results are first compared with the theoretical models advanced for uniaxially aligned composites. These models predict higher than experimental values. However, agreement between the predictions and experimental values improves when the effect of fiber orientation distribution in the injec tion molded samples is taken into account and as the ductility (or the PPO content) of the matrix increases. Cox's model when used with the "laminate analogy" gives the closest prediction to the experimental stiffness. Reinforcement efficiency factor for stiffness is a strong function of retained fiber lengths. The dependence of composite stiffness on the matrix ductility and the effects of compatibility on the mechanical properties of PS-PPO blend system are also discussed.
Subject
Condensed Matter Physics,Ceramics and Composites
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献