Remediation of metals and plastic from e-waste by iron mine indigenous acidophilic bacteria

Author:

Nasiri Tannaz1,Mokhtari Mehdi1,Teimouri Fahimeh1ORCID,Abouee Ehsan1

Affiliation:

1. Environmental Sciences and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

Abstract

The growing consumption of electrical and electronic equipment leads to high amounts of electronic waste (e-waste), which is now considered the fastest-growing waste stream at the national and international levels. As well as being a potential secondary resource due to its precious metals content, e-waste also contains strategic metals and plastics. For instance, mobile phones have about 25–55% plastic substances. A few studies have been performed to investigate the potential of indigenous bacteria in metals’ bioleaching from the polluted environment. Heterotrophic bioleaching potential in acidic conditions had been preliminarily investigated. Two soil types of iron ore were considered the source of indigenous bacteria. Despite the acidophilic nature of the bacterial consortium, they continued their leaching activity regardless of alkaline conditions. Maximum biorecovery rate related to copper (4%) responding to the main soil, owing to the higher copper content of mobile phone waste. Chromium had the least recovery rate (⩽0.002%). Overall, the maximum metal recovery rate was 4.7%, achieved by tailing heterotrophs at an e-waste loading of 10 g l−1. Statistical analysis had shown that there was no significant difference between the metal recovery rates and soil type or even the solid-liquid ratio ( p > 0.05). Although acidophilic indigenous heterotrophs could not be an appropriate alternative for a large amount of metal recovery process, they might have considerable potential in the bioremediation of e-waste plastic fractions and metals in low concentrations simultaneously.

Funder

shahid sadoughi university of medical sciences

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3