Physiological Responses of Red Maple Saplings To Sub-Irrigation With an Untreated Municipal Landfill Leachate

Author:

Shrive S.C.1,McBride R.A.1

Affiliation:

1. Department of Land Resource Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada

Abstract

An experiment was undertaken to examine the response of hydroponically-grown red maple ( Acer rubrum L.) saplings to a series of four flooding (sub-irrigation) treatments distributed over a 25-day period with an untreated (saline) municipal solid waste landfill leachate or deionized water. Net photosynthesis rates measured for water-treated saplings rapidly declined to 62% of the levels measured in untreated (control) saplings, but returned to pre-treatment levels with subsequent flooding treatments. Net photosynthesis rates measured for leachate-treated saplings decreased to about 50% of the levels measured for control saplings over the 25-day treatment period, and remained suppressed. Loss of turgor in leaves and a iron-oxyhydroxide plaque on root surfaces were also observed. Reasons proposed for this acute and apparently irreversible response to leachate exposure include: (i) extreme root anaerobiosis conditions caused by root system flooding and exacerbated by a high chemical oxygen demand leachate; (ii) increased root-soil interface resistance to transpiration water flow (osmotic potential gradient, iron oxyhydroxide plaque); (iii) metabolic intolerance to high solute concentrations in plant tissue; and (iv) exposure to potentially toxic volatile organic compounds. Water sub-irrigation had virtually no effect on nutrient and non-nutrient element concentrations in foliage or on the spectral reflectance characteristics of the leaves. Leachate treatment decreased the foliar content of many plant macro- and micro-nutrients significantly, and shifts in spectral reflectance patterns indicated declining plant vigour. Certain chemical constituents present in high concentrations in the leachate irrigant and which can be phytotoxic, such as Cl, accumulated to a significant degree in leachate-treated plant tissue.

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3