Long-range persistence in sea surface temperature off the coast of central California

Author:

Breaker Laurence C12ORCID

Affiliation:

1. Moss Landing Marine Laboratories, Moss Landing, CA, USA

2. School of Marine Science and Policy, University of Delaware, Newark, DE, USA

Abstract

We estimate long-range persistence in ocean surface temperature off the coast of central California, a region where similar observations have not been made. The database consists of 20-year records of daily sea surface temperature from three locations: Pacific Grove and Granite Canyon along the coast, and Southeast Farallon Island located 40 km off the coast and slightly further north. Long-range persistence is important for a number of reasons: on the negative side, it can have serious detrimental effects for statistical inference and on the positive side, it provides access to the ocean’s memory which can lead to a greater understanding of the processes involved and thus to better prediction. Long-range persistence also provides important insights into the relationship between the scaling that is obtained and the time scales employed. The first step in the analysis was to remove the annual cycle from the data at each location because of its detrimental effect on estimating long-range persistence. Then detrended fluctuation analysis was used to calculate long-range persistence where a single scaling exponent is obtained that relates the magnitudes of the fluctuations in the data to the time scales involved. Similar scaling exponents were obtained for Granite Canyon and Pacific Grove with values of 1.04 and 1.05, respectively. At Southeast Farallon Island, a value of 1.16 was obtained. The increase in the scaling exponent at Southeast Farallon Island is consistent with observations made elsewhere and model results, which indicate that as coastal influence decreases further offshore, the scaling exponents for sea surface temperature tend to increase. Because Southeast Farallon Island is exposed to subarctic waters offshore, whereas Pacific Grove and Granite Canyon are exposed to warmer waters from the California Undercurrent along the coast, these exposures to different water masses may contribute to the observed change in scaling behavior.

Publisher

SAGE Publications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3