Application of maximum entropy principle for estimation of droplet-size distribution using internal flow analysis of a swirl injector

Author:

Hosseinalipour Seyed Mostafa1,Karimaei Hadiseh1,Movahednejad Ehsan2,Ommi Fathollah3

Affiliation:

1. Water and Environment Research Lab, Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran

2. Department of Mechanical Engineering, University of California, Berkeley, USA

3. Engineering Faculty, Tarbiat Modares University, Tehran, Iran

Abstract

The maximum entropy principle is one of the first methods, which have been used to predict droplet size and velocity distributions of liquid sprays. Due to some drawbacks in this model, the predicted results do not match well with the experimental data. This paper presents a different approach for improving the maximum entropy principle model. It is suggested to improve the available energy source in the maximum entropy principle model equation by numerical solution of flow inside the injector based on the computational fluid dynamics technique. This will enhance the calculation accuracy of the turbulent kinetic energy of the output spray. Application of this procedure enhances the model predictions. The liquid sheet properties resulted from the analysis are also applied for calculation of the momentum source in the maximum entropy principle model. The proposed model is applied to predict the droplet size distribution of a hollow-cone spray formed by a swirl injector. The results show a better agreement with the available experimental data than the results of prior models.

Publisher

SAGE Publications

Subject

General Physics and Astronomy,Automotive Engineering,Energy Engineering and Power Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3