Software-defined environments for science and engineering

Author:

AbdelBaky Moustafa1,Diaz-Montes Javier1,Parashar Manish1

Affiliation:

1. Rutgers University, Piscataway, NJ, USA

Abstract

Service-based access models coupled with recent advances in application deployment technologies are enabling opportunities for realizing highly customized software-defined environments that can achieve new levels of efficiencies and can support emerging dynamic and data-driven applications. However, achieving this vision requires new models that can support dynamic (and opportunistic) compositions of infrastructure services, which can adapt to evolving application needs and the state of resources. In this article, we present a programmable dynamic infrastructure service composition approach that uses software-defined environment concepts to control the composition process. The resulting software-defined infrastructure service composition adapts to meet objectives and constraints set by the users, applications, and/or resource providers. We present and compare two different approaches for programming resources and controlling the service composition, one that is based on a rule engine and another that leverages a constraint programming model for resource description. We present the design and prototype implementation of such software-defined service composition and demonstrate its operation through a use case where multiple views of heterogeneous, geographically distributed services are aggregated on demand based on user and resource provider specifications. The resulting compositions are used to run different bioinformatics workloads, which are encapsulated inside Docker containers. Each view independently adapts to various constraints and events that are imposed on the system while minimizing the workload completion time.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LoRaWAN Network Downlink Routing Control Strategy Based on the SDN Framework and Improved ARIMA Model;Future Internet;2022-10-27

2. An efficient metrics based self‐adaptive design model by multiobjective gray wolf optimization with extreme learning machine for autonomic computing system application;Concurrency and Computation: Practice and Experience;2021-10-12

3. Toward scalable monitoring on large-scale storage for software defined cyberinfrastructure;Proceedings of the 2nd Joint International Workshop on Parallel Data Storage & Data Intensive Scalable Computing Systems - PDSW-DISCS '17;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3