Performance engineering for real and complex tall & skinny matrix multiplication kernels on GPUs

Author:

Ernst Dominik1ORCID,Hager Georg1,Thies Jonas2,Wellein Gerhard1

Affiliation:

1. Erlangen Regional Computing Center (RRZE), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

2. German Aerospace Center (DLR), Simulation and Software Technology, Köln, Germany

Abstract

General matrix-matrix multiplications with double-precision real and complex entries (DGEMM and ZGEMM) in vendor-supplied BLAS libraries are best optimized for square matrices but often show bad performance for tall & skinny matrices, which are much taller than wide. NVIDIA’s current CUBLAS implementation delivers only a fraction of the potential performance as indicated by the roofline model in this case. We describe the challenges and key characteristics of an implementation that can achieve close to optimal performance. We further evaluate different strategies of parallelization and thread distribution and devise a flexible, configurable mapping scheme. To ensure flexibility and allow for highly tailored implementations we use code generation combined with autotuning. For a large range of matrix sizes in the domain of interest we achieve at least 2/3 of the roofline performance and often substantially outperform state-of-the art CUBLAS results on an NVIDIA Volta GPGPU.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detailed Analysis and Optimization of Irregular-Shaped Matrix Multiplication on Multi-Core DSPs;Proceedings of the 53rd International Conference on Parallel Processing;2024-08-12

2. Real-time Batched Distance Computation for Time-Optimal Safe Path Tracking;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

3. Starlight: A kernel optimizer for GPU processing;Journal of Parallel and Distributed Computing;2024-05

4. Optimizing Full-Spectrum Matrix Multiplications on ARMv8 Multi-Core CPUs;IEEE Transactions on Parallel and Distributed Systems;2024-03

5. Performance Analysis and Benchmarking of a Temperature Downscaling Deep Learning Model;2023 31st Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP);2023-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3