Resilience and fault tolerance in high-performance computing for numerical weather and climate prediction

Author:

Benacchio Tommaso1ORCID,Bonaventura Luca1,Altenbernd Mirco2,Cantwell Chris D3,Düben Peter D45,Gillard Mike6,Giraud Luc7,Göddeke Dominik2,Raffin Erwan8ORCID,Teranishi Keita9,Wedi Nils4

Affiliation:

1. MOX – Modelling and Scientific Computing, Dipartimento di Matematica, Politecnico di Milano, Milan, Italy

2. Institute for Applied Analysis and Numerical Simulation and Cluster of Excellence ‘Data-Driven Simulation Science’, University of Stuttgart, Stuttgart, Germany

3. Department of Aeronautics, Imperial College London, London, UK

4. European Centre for Medium Range Weather Forecasts, Reading, UK

5. AOPP, Department of Physics, University of Oxford, Oxford, UK

6. Loughborough University, Loughborough, UK

7. HiePACS, Inria Bordeaux, Sud-Ouest, Talence, France

8. CEPP – Center for Excellence in Performance Programming, Atos, Rennes, France

9. Sandia National Laboratories, Livermore, CA, USA

Abstract

Progress in numerical weather and climate prediction accuracy greatly depends on the growth of the available computing power. As the number of cores in top computing facilities pushes into the millions, increased average frequency of hardware and software failures forces users to review their algorithms and systems in order to protect simulations from breakdown. This report surveys hardware, application-level and algorithm-level resilience approaches of particular relevance to time-critical numerical weather and climate prediction systems. A selection of applicable existing strategies is analysed, featuring interpolation-restart and compressed checkpointing for the numerical schemes, in-memory checkpointing, user-level failure mitigation and backup-based methods for the systems. Numerical examples showcase the performance of the techniques in addressing faults, with particular emphasis on iterative solvers for linear systems, a staple of atmospheric fluid flow solvers. The potential impact of these strategies is discussed in relation to current development of numerical weather prediction algorithms and systems towards the exascale. Trade-offs between performance, efficiency and effectiveness of resiliency strategies are analysed and some recommendations outlined for future developments.

Funder

Deutsche Forschungsgemeinschaft

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Análise de Custo e Desempenho de um Sistema de Modelagem Atmosférica Tolerante a Falhas no AWS ParallelCluster;Anais do XXIV Simpósio em Sistemas Computacionais de Alto Desempenho (SSCAD 2023);2023-10-17

2. Software Metrics for Container-Based Applications: Systematic Literature Review;2023 International Conference on Information Management and Technology (ICIMTech);2023-08-24

3. A Checkpointing Recovery Approach for Soft Errors Based on Detector Locations;Electronics;2023-02-06

4. Compiler Optimization Parameter Selection Method Based on Ensemble Learning;Electronics;2022-08-06

5. Deep Soft Error Propagation Modeling Using Graph Attention Network;Journal of Electronic Testing;2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3