Models and complexity results for performance and energy optimization of concurrent streaming applications

Author:

Benoit Anne1,Renaud-Goud Paul2,Robert Yves2

Affiliation:

1. LIP, Ecole Normale Supérieure de Lyon, France,

2. LIP, Ecole Normale Supérieure de Lyon, France

Abstract

In this paper, we study the problem of finding optimal mappings for several independent but concurrent workflow applications, in order to optimize performance-related criteria together with energy consumption. Each application consists of a linear chain graph with several stages, and processes successive data sets in pipeline mode, from the first to the last stage. The problem is to decide which processors to enroll, at which speed (or mode) to use them, and which stages they should execute. There is a clear trade-off to reach, since running faster and/or more processors leads to better performance, but energy consumption is then very high. Energy savings can be achieved at the price of a lower performance, by reducing processor speeds or enrolling fewer resources. We study the problem complexity on different target execution platforms, ranking from fully homogeneous platforms to fully heterogeneous ones. We consider three mapping strategies: (i) one-to-one mappings, where a processor is assigned a single stage; (ii) interval mappings, where a processor may process an interval of consecutive stages of the same application; and (iii) general mappings, which are fully arbitrary, i.e. a processor may process stages of several distinct applications. Finally, we compare two different models for the computation of the latency, which is the time elapsed between the beginning and the end of the execution of a given data set: with the PATH model, it is computed as the length of the path taken by this data set, while with the WAVEFRONT model, each data set progresses concurrently within a period. For all platform types, all mapping strategies and both latency models, we establish the complexity of several multi-criteria optimization problems, whose objective functions combine period, latency and energy criteria. In particular, we exhibit instances where the problem is NP-hard with concurrent applications, while it can be solved in polynomial time for a single application, and instances whose problem complexity depends upon the latency model.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Reference32 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Brief Announcement;Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures;2016-07-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3