Affiliation:
1. College of Computer and Information Systems, Al-Yamamah University, Kingdom of Saudi Arabia
Abstract
The microthreaded many-core architecture is comprised of multiple clusters of fine-grained multi-threaded cores. The management of concurrency is supported in the instruction set architecture of the cores and the computational work in application is asynchronously delegated to different clusters of cores, where the cluster is allocated dynamically. Computer architects are always interested in analyzing the complex interaction amongst the dynamically allocated resources. Generally a detailed simulation with a cycle-accurate simulation of the execution time is used. However, the cycle-accurate simulator for the microthreaded architecture executes at the rate of 100,000 instructions per second, divided over the number of simulated cores. This means that the evaluation of a complex application executing on a contemporary multi-core machine can be very slow. To perform efficient design space exploration we present a co-simulation environment, where the detailed execution of instructions in the pipeline of microthreaded cores and the interactions amongst the hardware components are abstracted. We present the evaluation of the high-level simulation framework against the cycle-accurate simulation framework. The results show that the high-level simulator is faster and less complicated than the cycle-accurate simulator but with the cost of losing accuracy.
Subject
Hardware and Architecture,Theoretical Computer Science,Software
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献