One-IPC high-level simulation of microthreaded many-core architectures

Author:

Uddin Irfan1

Affiliation:

1. College of Computer and Information Systems, Al-Yamamah University, Kingdom of Saudi Arabia

Abstract

The microthreaded many-core architecture is comprised of multiple clusters of fine-grained multi-threaded cores. The management of concurrency is supported in the instruction set architecture of the cores and the computational work in application is asynchronously delegated to different clusters of cores, where the cluster is allocated dynamically. Computer architects are always interested in analyzing the complex interaction amongst the dynamically allocated resources. Generally a detailed simulation with a cycle-accurate simulation of the execution time is used. However, the cycle-accurate simulator for the microthreaded architecture executes at the rate of 100,000 instructions per second, divided over the number of simulated cores. This means that the evaluation of a complex application executing on a contemporary multi-core machine can be very slow. To perform efficient design space exploration we present a co-simulation environment, where the detailed execution of instructions in the pipeline of microthreaded cores and the interactions amongst the hardware components are abstracted. We present the evaluation of the high-level simulation framework against the cycle-accurate simulation framework. The results show that the high-level simulator is faster and less complicated than the cycle-accurate simulator but with the cost of losing accuracy.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3