Affiliation:
1. Departamento de Ingeniería de Computadores, CITIC, Grupo de Arquitectura de Computadores, Universidade da Coruña, A Coruña, Spain
Abstract
Genome-Wide Association Studies (GWASs), analyses that try to find a link between a given phenotype (such as a disease) and genetic markers, have been growing in popularity in the recent years. Relations between phenotypes and genotypes are not easy to identify, as most of the phenotypes are a product of the interaction between multiple genes, a phenomenon known as epistasis. Many authors have resorted to different approaches and hardware architectures in order to mitigate the exponential time complexity of the problem. However, these studies make some compromises in order to keep a reasonable execution time, such as limiting the number of genetic markers involved in the interaction, or discarding some of these markers in an initial filtering stage. This work presents MPI3SNP, a tool that implements a three-way exhaustive search for cluster architectures with the aim of mitigating the exponential growth of the run-time. Modern cluster solutions usually incorporate GPUs. Thus, MPI3SNP includes implementations for both multi-CPU and multi-GPU clusters. To contextualize the performance achieved, MPI3SNP is able to analyze an input of 6300 genetic markers and 3200 samples in less than 6 min using 768 CPU cores or 4 min using 8 NVIDIA K80 GPUs. The source code is available at https://github.com/chponte/mpi3snp .
Funder
Ministry of Economy and Competitiveness of Spain and FEDER funds of the EU
Subject
Hardware and Architecture,Theoretical Computer Science,Software
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献