Towards exascale for wind energy simulations

Author:

Min Misun1ORCID,Brazell Michael2,Tomboulides Ananias3,Churchfield Matthew4,Fischer Paul156,Sprague Michael4

Affiliation:

1. Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL, USA

2. Computational Science Center, National Renewable Energy Laboratory, Golden, CO, USA

3. Mechanical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece

4. National Wind Technology Center, National Renewable Energy Laboratory, Golden, CO, USA

5. Computer Science, University of Illinois Urbana-Champaign, Urbana, IL, USA

6. Mechanical Science & Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA

Abstract

We examine large-eddy-simulation modeling approaches and computational performance of two open-source computational fluid dynamics codes for the simulation of atmospheric boundary layer flows that are of direct relevance to wind energy production. The first code, NekRS, is a high-order, unstructured-grid, spectral element code. The second code, AMR-Wind, is a second-order, block-structured, finite-volume code with adaptive mesh refinement capabilities. The objective of this study is to co-develop these codes in order to improve model fidelity and performance for each. These features will be critical for running ABL-based applications such as wind farm analysis on advanced computing architectures. To this end, we investigate the performance of NekRS and AMR-Wind on the Oak Ridge Leadership Facility supercomputers Summit, using 4 to 800 nodes (24 to 4,800 NVIDIA V100 GPUs), and Crusher, the testbed for the Frontier exascale system, using 18 to 384 Graphics Compute Dies on AMD MI250X GPUs. We compare strong- and weak-scaling capabilities, linear solver performance, and time to solution. We also identify leading inhibitors to parallel scaling.

Funder

Department of Energy

Exascale Computing Project

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3