Affiliation:
1. M3E S.r.l., via Giambellino 7, 35129 Paova, Italy
2. Institute for Applied Computing, CNR, 00185 Rome, Italy
Abstract
The solution of linear systems of equations is a central task in a number of scientific and engineering applications. In many cases the solution of linear systems may take most of the simulation time thus representing a major bottleneck in the further development of scientific and technical software. For large scale simulations, nowadays accounting for several millions or even billions of unknowns, it is quite common to resort to preconditioned iterative solvers for exploiting their low memory requirements and, at least potential, parallelism. Approximate inverses have been shown to be robust and effective preconditioners in various contexts. In this work, we show how adaptive Factored Sparse Approximate Inverse (aFSAI), characterized by a very high degree of parallelism, can be successfully implemented on a distributed memory computer equipped with GPU accelerators. Taking advantage of GPUs in adaptive FSAI set-up is not a trivial task, nevertheless we show through an extensive numerical experimentation how the proposed approach outperforms more traditional preconditioners and results in a close-to-ideal behavior in challenging linear algebra problems.
Subject
Hardware and Architecture,Theoretical Computer Science,Software
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献