Affiliation:
1. LIP Laboratory, Ecole Normale Supérieure of Lyon, France
2. CNRS, IRISA, Rennes, France
Abstract
Large-scale distributed systems (high-performance computing centers, networks, data centers) are expected to consume huge amounts of energy. In order to address this issue, shutdown policies constitute an appealing approach able to dynamically adapt the resource set to the actual workload. However, multiple constraints have to be taken into account for such policies to be applied on real infrastructures: the time and energy cost of switching on and off, the power and energy consumption bounds caused by the electricity grid or the cooling system, and the availability of renewable energy. In this article, we propose models translating these various constraints into different shutdown policies that can be combined for a multiconstraint purpose. Our models and their combinations are validated through simulations on a real workload trace.
Subject
Hardware and Architecture,Theoretical Computer Science,Software
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献