An optimization scheme for a multilayer armour module against 7.62 mm armour piercing projectile

Author:

Paman Ashish1ORCID,Sukumar Govindan1,Ramakrishna B1,Madhu Vemuri1

Affiliation:

1. Armour Design and Development Division, Defence Metallurgical Research Laboratory, Hyderabad, India

Abstract

This study presents a methodology to find the optimal sequence and thicknesses of individual material layers in a multilayer armour module. The methodology is demonstrated with application to three different metal alloys: Armox-500T, Ti-6Al-4V and Al-2024. Numerical simulations are performed first to study the ballistic impact behaviour of these three materials using AUTODYN-3D code. The results of numerical simulations are compared with experimental results for validating the numerical models. Thereafter, a three-layer armour module consisting of these three materials is optimized to defeat 7.62 armour piercing projectile with minimum weight. The optimization process involves carrying a set of numerical simulations based on the design of experiment approach to generate a response surface for the ballistic performance of a composite module. A new ballistic performance parameter is introduced to measure the ballistic response of the module by combining depth of penetration and residual velocity of the projectile to bring uniformity between two cases of partial and complete penetration. The proposed parameter provides more information on ballistic performance. The response surface for ballistic performance parameter is generated in terms of thicknesses for six possible combinations of three material layers. The adequacy of the proposed optimization scheme is confirmed with ballistic experiments. The sequence Armox-500T/Ti-6Al-4V/Al-2024 with thicknesses 5.5, 8.5 and 13 mm, respectively, is found to be the best against 7.62 mm armour piercing projectile. Furthermore, the performance of each individual material is compared with an optimized three-layer armour module. The composite module is found to be weight efficient over Armox-500T, Al-2024 and provides better thickness efficiency over Al-2024. The weight efficiency and thickness efficiency of Ti-6Al-4V are found to be comparable to the composite module. This study emphasizes the necessity of developing new procedures to provide reliable estimates of design parameters for a multilayer armour module.

Funder

defence research and development organisation

Publisher

SAGE Publications

Subject

Mechanics of Materials,Safety, Risk, Reliability and Quality,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3