Radiation Dose and Image Quality in Neuroangiography: Effects of Increased Tube Voltage, Added X-Ray Filtration and Antiscatter Grid Removal

Author:

Söderman M.,Hansson B.1,Axelsson B.1

Affiliation:

1. Dept. of Hospital Physics, Karolinska Hospital; Stockholm, Sweden

Abstract

During endovascular treatment the patient may be subject to fluoroscopy for long periods as well as multiple x-ray exposures. The radiation dose to the patient can be considerable, and cause local deterministic effects such as alopecia or even skin burn. The potential carcinogenic effects should also be noted, being especially important in the paediatric population. We measured radiation doses to patients and personnel during neuroendovascular procedures and diagnostic neuroangiography. We also tried to reduce the radiation dose to the patient utilising increased tube voltage, additional primary X-ray filtration and by removing the antiscatter grid in front of the image intensifier, employing air gap technique. We investigated radiation doses to patient and personnel during neuroangiographic procedures and optimized the examination technique with regard to radiation dose with maintained image quality. Radiation exposure to patients and personnel was measured with thermoluminescent dosimeters and permanently mounted KermaDose-Area-Product meters in front of the X-ray tubes during 13 cerebral angiographies and six neuroendovascular procedures. We performed experiments with radiation dose measurements and evaluation of image quality with 80 and 90 kV tube voltage during image acquisition and 75 and 85 kV during fluoroscopy, as well as with different primary X-ray filtration. Images from patient studies acquired with the original grid in front of the image intensifier were compared with images from patient studies acquired with the grid removed and air gap technique (30 cm). Images from patient studies acquired with the original examination technique were compared to images from patient studies acquired with increased x-ray tube voltage, increased x-ray filtering and with the antiscatter grid removed using an airgap as scatter reduction method. Radiation exposure to personnel was very low using standard protective devices. Measurable doses were recorded only on the hands and forehead of the neuroradiologist. Maximum entrance skin dose was about 1 Gy on the side of the patientspatient's forehead during an endovascular procedure. Increasing the tube voltage from 75 to 85 – 85 and 90 kV, exchanging the original 0.5 mm aluminium primary filtration for 0.2 mm copper and removing the antiscatter grid allowed us to reduce entrance skin dose to the patient by 70% with unchanged or slightly improved image quality.

Publisher

SAGE Publications

Subject

Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3