Computer Simulation of Flow Dynamics in Paraclinoidal Aneurysms

Author:

Kobayashi N.,Miyachi S.,Okamoto T.,Kojima T.,Hattori K.,Qian S.1,Takeda H.1,Yoshida J.

Affiliation:

1. Rflow Co., Ltd., Saitama; Japan

Abstract

Endovascular treatment, which is very useful method especially for paraclinoidal aneurysms, has the limitations of coil compaction and recanalization, which are difficult to predict. We tried to understand flow dynamic features, one of the important factors of such problems, using computer flow dynamics (CFD) simulations. CFD simulations were made in paraclinoidal aneurysm model of different size and protruded directions. Flow patterns, flow velocities and pressure are analyzed. Although the pressure on the aneurismal orifice is highest in the aneurysm protruding vertically - upward, the flow velocity is highest in the superior-medial protruding one. Significant difference is not observed in either flow patterns, flow velocities or pressures on the aneurismal orifices between the sizes of aneurismal sac. Among paraclinoidal aneurysms, an aneurysm protruding to superior-medially receives the most severe haemodynamic stresses at the orifice and the aneurysm size does not cause significant differences in the aspect of flow dynamics. It should be considered in the treatment of such aneurysms.

Publisher

SAGE Publications

Subject

Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3