Detecting damage in rudder stocks under load using electro-mechanical susceptance: Frequency-warping and semi-supervised approaches

Author:

Kexel Christian12ORCID,Moll Jochen1ORCID

Affiliation:

1. Department of Physics, Goethe University Frankfurt, Frankfurt am Main, Germany

2. Department of Mechanical Engineering, University of Siegen, Siegen, Germany

Abstract

Active piezoelectric transducers are successfully deployed in recent years for structural health monitoring using guided elastic waves or electro-mechanical impedance (EMI). In both domains, damage detection can be hampered by operational/environmental conditions and low-power constraints. In both domains, processing can be divided into approaches (i) taking into account baselines of the pristine structure as reference, (ii) ingesting an extensive measurement history for clustering to explore anomalies, (iii) incorporating additional information to label a state. The latter approach requires data from complementary sensors, learning from laboratory/field experiments or knowledge from simulations which may be infeasible for complex structures. Semi-supervised approaches are thus gaining popularity: few initial annotations are needed, because labels emerge through clustering and are subsequently used for state classification. In our work, bending and combined bending/torsion studies on rudder stocks are considered regarding EMI-based damage detection in the presence of load. We discuss the underpinnings of our processing. Then, we follow strategy (i) by introducing frequency warping to derive an improved damage indicator (DI). Finally, in a semi-supervised manner, we develop simple rules which even in presence of varying loads need only two frequency points for reliable damage detection. This sparsity-enforcing low-complexity approach is particularly beneficial in energy-aware SHM scenarios.

Funder

German Federal Ministry of Education and Research

Germany Federal Ministry for Economic Affairs and Energy

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3