Experimental investigation of a novel high performance multi-walled carbon nano-polyvinylpyrrolidone/silicon-based shear thickening fluid damper

Author:

Sun Li1ORCID,Wang Geng1,Zhang Chunwei2

Affiliation:

1. School of Civil Engineering, Shenyang Jianzhu University, Shenyang, Liaoning, China

2. Multidisciplinary Center for Infrastructure Engineering, Shenyang University of Technology, Shenyang, Liaoning, China

Abstract

A novel high performance multi-walled carbon nano-polyvinylpyrrolidone/silicon-based shear thickening fluid (MWCNTs-PVP/SiO2-STF), abbreviated and subsequently referred to as MPS-STF, is developed in this paper. The rheological properties of the MPS-STF are investigated, and the viscosity model of MPS-STF is established. Furthermore, the MPS-STF based viscous fluid damper (MPS-STF-VFD) is designed according to the rheological characteristics of the novel fluid. The impact of loading frequencies, displacement amplitudes and the numbers of piston holes on the dynamic performance of the damper is studied through sophisticated multiple cases loading tests using MTS facility. The test results show that the loading frequency, displacement amplitudes and the number of piston holes have great influence on the rheological properties of MPS-STF. This directly affects the maximum damping force and heat dissipation capacity of MPS-STF-VFD. Finally, the mechanical model of the damper is established based on the principle of fluid mechanics. The simulation results agree well with the experimental data. The high damping performance of the MPS-STF-VFD can be achieved based on the characteristics of the modified fluid. Relevant results reported in this paper can provide an important solution for the development and application of damping technology in engineering structures.

Funder

Department of Science and Technology of Shandong Province

National Natural Science Foundation of China

Ministry of Science and Technology of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3