Analytical Modeling of Electrorheological Material Based Adaptive Beams

Author:

Yalcintas Melek,Coulter John P.1

Affiliation:

1. Intelligent Materials and Manufacturing Laboratory, Department of Mechanical Engineering and Mechanics, Lehigh University, Packard Lab, 19 Memorial Drive West, Bethlehem, Pennsylvania 18015-3085

Abstract

The use of electrorheological (ER) materials in adaptive structures has received much attention recently. ER adaptive structures are based on controlling the pre-yield rheology of the ER material, which is achieved by applying different electrical fields to the ER material. In this study the dynamic behavior of an ER material based adaptive beam was modeled. Previous modeling efforts were extended towards a more detailed analysis of modal results. The adaptive beams focused on were composed of three layers: an ER material controllable damping layer and surrounding upper and lower elastic plates. A structural model of the assembly in a transverse continuous vibration mode subjected to simply supported boundary conditions was developed and analyzed. It was assumed that each structure was subjected to sinusoidal actuation applied at one or two locations. The model was tested under the conditions of varying forcing frequency from 0-300 Hz, and applied electrical field from 0-3.5 kV/mm. Time domain displacement response, natural frequencies, and loss factors of the structures at varying electric fields and varying damping layer thicknesses were obtained. The analytical results of the adaptive beam were compared with experimental results under the same physical conditions. Qualitative agreement between theory and experimentation resulted. In addition an effort was made to reduce the vibration of the structure by selecting the optimum electrical field which yields minimized vibration for each excitation frequency.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3