Embedded magnetohydrodynamic liquid metal thermal transport: validated analysis and design optimization

Author:

Hartl Darren J1,Frank Geoffrey J2,Baur Jeffery W3

Affiliation:

1. United Technology Corporation, Air Force Research Lab (AFRL/RXCC), USA

2. University of Dayton Research Institute, Air Force Research Lab (AFRL/RXCC), USA

3. Air Force Research Lab (AFRL/RXCC), USA

Abstract

This work addresses the multi-fidelity analysis-driven design of a thermal transport system based on the flow of liquid metal through a structural laminate as induced by a solid-state magneto-hydro-dynamic (MHD) pump. A full three-dimensional model of the thermal transport system is both simplified to a reduced-order algebraic model, which correctly captures trends in the global system response, and alternatively implemented in an finite element framework, which captures essential global and local aspects of the system response not attainable via reduced-order modeling. The predictions of each model are validated against previously published experimental data. It is shown in detail for the first time in the context of MHD systems that a multi-fidelity approach to the multi-objective design optimization problem can leverage both the speed of the algebraic model and the accuracy of the finite element model, leading to effective predictions of optimal system designs in a reasonable amount of time. A relatively new algorithm for multi-objective and parameterized Pareto optimization is employed, and a clear path of continued development is identified.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3