Affiliation:
1. Department of Mechanical and Aerospace Engineering, The University of Alabama in Huntsville, Huntsville, AL, USA
2. Department of Aerospace Engineering, University of Maryland at College Park, College Park, MD, USA
Abstract
Pneumatic artificial muscles are a class of pneumatically driven actuators that are remarkable for their simplicity, lightweight, high stroke, and high force. The McKibben artificial muscle, which is a type of pneumatic artificial muscle, is composed of an elastomeric bladder, a braided mesh sleeve, and two end fittings. Gaylord first developed an analysis of the McKibben artificial muscle based on the conservation of energy principle. The Gaylord model predicts block force but fails to accurately capture actuation force versus contraction ratio behavior. To address this lack, a non-linear quasi-static model is developed based on finite strain theory. The internal stresses in the bladder are determined by treating it as a cylinder subjected to applied internal pressure and a prescribed kinematic constraint of the outer surface. Subsequently, the force balance approach is applied to derive the equilibrium equations in both the axial and circumferential directions. Finally, the closed-form pneumatic artificial muscle quasi-static actuator force is obtained. The analysis was experimentally validated using actuation force versus contraction ratio test data at a series of discrete inflation pressures for two different pneumatic artificial muscles: a large pneumatic artificial muscle ( L = 128.5 mm, B = 7.85 mm, with a latex bladder) and a miniature pneumatic artificial muscle ( L = 43.9 mm, B = 2.3 mm, with a V330 elastomeric bladder).
Subject
Mechanical Engineering,General Materials Science
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献