Electromagnetic Design of a Magnetorheological Damper

Author:

Nam Yun-Joo1,Park Myeong-Kwan2

Affiliation:

1. Applied Fluid Power Systems Laboratory, Department of Mechanical Engineering Pusan National University, Busan 609-735, Korea

2. Applied Fluid Power Systems Laboratory, Department of Mechanical Engineering Pusan National University, Busan 609-735, Korea,

Abstract

This study presents an electromagnetic design methodology for the magnetorheological (MR) damper. To improve the performance of the MR damper, the magnetic field should be effectively supplied to the MR fluid. Therefore, it is important that the magnetic circuit composed with the MR fluid, the ferromagnetic yoke for forming the magnetic flux path, and the electromagnetic coil are well designed from the electromagnetic viewpoint. For this purpose, two effective approaches are proposed; one is to shorten the magnetic flux path by removing the unnecessary bulk of the yoke in order to improve the static characteristic of the MR damper, and the other is to increase the magnetic reluctance of the magnetic circuit by minimizing the cross-sectional area of the yoke through which the magnetic flux passes in order to improve the dynamic and hysteretic characteristics. After designing and manufacturing two MR dampers, the conventional type and the proposed type, their performances are evaluated and compared through the magnetic field analysis and a series of basic experiments. These results show that the proposed design methodology can be effectively used as a fundamental design material for expanding application fields of the MR damper.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vibration suppression of a platform by a fractional type electromagnetic damper and inerter-based nonlinear energy sink;Applied Mathematical Modelling;2025-01

2. Semi-Active System of Vehicle Vibration Damping;Applied Sciences;2021-05-17

3. Performance Evaluation of a Single Sensor Control Scheme Using a Twin-Tube MR Damper Based Semi-active Suspension;Journal of Vibration Engineering & Technologies;2021-03-11

4. Geometry Optimization of Magneto-Rheological Damper Based on Magnetic Saturation;Lecture Notes in Mechanical Engineering;2020-12-29

5. Magnetorheological seal: A review;International Journal of Applied Electromagnetics and Mechanics;2020-04-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3