Reinforcement of Piezoelectric Polymers with Carbon Nanotubes: Pathway to Next-generation Sensors

Author:

Ramaratnam Arun1,Jalili Nader2

Affiliation:

1. Smart Structures and Nanoelectromechanical Systems Laboratory, Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921, USA

2. Smart Structures and Nanoelectromechanical Systems Laboratory, Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921, USA,

Abstract

Piezoelectric polymers such as poly(vinylidene fluoride) (PVDF) are being currently utilized as low-cost sensors in many structural vibration control applications and measurements. Their low electromechanical coupling coefficient, however, has always been a concern when utilized in different applications. In order to remedy this, carbon nanotubes, known for their extraordinary properties, can be mixed with such piezoelectric polymers as they have the potential to improve the electromechanical response of these polymers. Along this line of reasoning, different types of nanotubes; namely, single-walled and multiwalled are blended with a copolymer of PVDF. Through extensive experimental vibration testing and theoretical verification, it is found that the nanotube-based polymers yield better response characteristics than those of the plain piezoelectric polymers. More specifically, it is demonstrated that the dominant mechanism responsible for improved sensing performance is the increased Young’s modulus of elasticity of the nanotube-based polymer for the samples considered here. The significant change in properties of these piezoelectric polymers with different fabrication conditions and nanotube addition, though provokes doubts about standardization, creates a pathway for the development of next-generation sensors with enhanced or entirely new properties.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3