Stimuli-triggered self-healing functionality in advanced fibre-reinforced composites

Author:

Trask Richard S1,Norris Christopher J1,Bond Ian P1

Affiliation:

1. Advanced Composites Centre for Innovation and Science (ACCIS), Department of Aerospace Engineering, University of Bristol, Bristol, UK

Abstract

Inspired by the sensory and autonomous healing processes of living organisms, whether from the Animalia or Plantae biological kingdoms, a microvascular network that undertakes a dual role of sensing structural damage before initiating a triggered healing response has been developed and embedded within an advanced fibre-reinforced composite [−45/90/45/0]2S laminate. In this study, a single vascule is used as a sensing pathway, which detects the introduction of ply delamination and matrix microcracking following a 10-J low-velocity impact event. Once damage connectivity between the sensing vascule and those open to the ambient environment is established, the delivery of a healing agent to the damage zone is triggered. An investigation into a commercially available epoxy healing agent (RT151) and an in-house healing resin formation (diglycidyl ether of bisphenol-A/diethylenetriamine) epoxy system has been evaluated. The pressure-assisted delivery of the liquid epoxy healing agent to the damage zone was observed to occur within 49 s across all specimens. The recovery of compression strength post impact was 91% and 94% for the RT151 and diglycidyl ether of bisphenol-A healing agents, respectively. This study provides further confirmation on how a bio-inspired vascular healing network could substantially enhance the reliability and robustness of advanced composite materials.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Reference49 articles.

1. ASTM D7137/D7137M-07 (2007) Compressive residual strength properties of damaged polymer matrix composite materials – test method designation. ASTM International.

2. ASTM D7136/D7136M-07 (2007) Measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event – test method designation. ASTM International.

3. Mechanochemically triggered bond formation in solid-state polymers

4. Self-Healing Polymers and Composites

5. A smart repair system for polymer matrix composites

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3