Feasibility of self-pre-stressing concrete members using shape memory alloys

Author:

Ozbulut Osman E1,Hamilton Reginald F2,Sherif Muhammad M1,Lanba Asheesh2

Affiliation:

1. Department of Civil and Environmental Engineering, University of Virginia, Charlottesville, VA, USA

2. Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, USA

Abstract

Shape memory alloys are a class of smart materials that recover apparent plastic deformation (∼6%–8% strain) after heating, thus “remembering” the original shape. This shape memory effect can be exploited for self-post-tensioning applications, and NiTi-based shape memory alloys are promising as shape memory effect is possible at elevated temperatures amenable to practical application compared to conventional NiTi. This study investigates the feasibility of self-post-tensioned concrete elements by activating the shape memory effect of NiTiNb, a class of wide-hysteresis shape memory alloys, using the heat of hydration of grout. First, the microstructure characterization of the NiTiNb wide-hysteresis shape memory alloys is discussed. Then, the tensile stress-induced martensitic transformations in NiTiNb shape memory alloy tendons are studied. Next, the temperature increase due to the heat of hydration of four commercially available grouts is investigated. Pull-out tests are also conducted to investigate the bond between the grout and shape memory alloy bar. Results show that the increase in temperature due to hydration heat can provide significant strain recovery during a free recovery experiment, while the same temperature increase only partially activates the shape memory alloys during a constrained recovery.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3