A Neural Network Inverse Model for a Shape Memory Alloy Wire Actuator

Author:

Song G.1,Chaudhry V.2,Batur C.2

Affiliation:

1. Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA,

2. Department of Mechanical Engineering, The University of Akron, Akron, OH 44325, USA

Abstract

Tracking control of shape memory alloy (SMA) actuators is essential in many applications such as vibration controls. Due to the hysteresis, an inherent nonlinear phenomenon associated with SMAs, open-loop control design has proven inadequate for tracking control of these actuators. Aimed at eliminating the position sensor to reduce cost of an SMA actuator system, in this paper, a neural network open loop controller is proposed for tracking control of an SMA actuator. A test stand, including a titanium-nickel (TiNi, or Nitinol) SMA wire actuator, a position sensor, bias springs, and a programmable current amplifier, is used to generate training data and to verify the neural networks open loop controller. A digital data acquisition and real-time control system was used to record experimental data and to implement the control strategy. Based on the training data obtained from the test stand, two neural networks are used to respectively model the forward and inverse hysteresis relations between the applied voltage and the displacement of the SMA wire actuator. To control the SMA actuator without using a position sensor, the neural network inverse model is used as a feedforward controller. The experimental results demonstrate the effectiveness of the neural network open loop controller for tracking control of the SMA wire actuator.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Reference7 articles.

1. Tracking control of a piezoceramic actuator

2. Hughes, D. and Wen, J. 1994 . “Preisach Modeling and Compensation for Smart Material Hysteresis,” SPIE Active Materials and Smart Structures , 2427 : 50 - 64 .

3. �ber die magnetische Nachwirkung

4. A robust co-sputtering fabrication procedure for TiNi shape memory alloys for MEMS

5. Hysteresis Modeling of SMA Actuators for Control Applications

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3