Machine learning-based unenhanced CT texture analysis for predicting BAP1 mutation status of clear cell renal cell carcinomas

Author:

Kocak Burak1ORCID,Durmaz Emine Sebnem2,Kaya Ozlem Korkmaz3,Kilickesmez Ozgur1

Affiliation:

1. Department of Radiology, Istanbul Training and Research Hospital, Istanbul, Turkey

2. Department of Radiology, Buyukcekmece Mimar Sinan State Hospital, Istanbul, Turkey

3. Department of Radiology, Koc University School of Medicine, Koc University Hospital, Istanbul, Turkey

Abstract

Background BRCA1-associated protein 1 (BAP1) mutation is an unfavorable factor for overall survival in patients with clear cell renal cell carcinoma (ccRCC). Radiomics literature about BAP1 mutation lacks papers that consider the reliability of texture features in their workflow. Purpose Using texture features with a high inter-observer agreement, we aimed to develop and internally validate a machine learning-based radiomic model for predicting the BAP1 mutation status of ccRCCs. Material and Methods For this retrospective study, 65 ccRCCs were included from a public database. Texture features were extracted from unenhanced computed tomography (CT) images, using two-dimensional manual segmentation. Dimension reduction was done in three steps: (i) inter-observer agreement analysis; (ii) collinearity analysis; and (iii) feature selection. The machine learning classifier was random forest. The model was validated using 10-fold nested cross-validation. The reference standard was the BAP1 mutation status. Results Out of 744 features, 468 had an excellent inter-observer agreement. After the collinearity analysis, the number of features decreased to 17. Finally, the wrapper-based algorithm selected six features. Using selected features, the random forest correctly classified 84.6% of the labelled slices regarding BAP1 mutation status with an area under the receiver operating characteristic curve of 0.897. For predicting ccRCCs with BAP1 mutation, the sensitivity, specificity, and precision were 90.4%, 78.8%, and 81%, respectively. For predicting ccRCCs without BAP1 mutation, the sensitivity, specificity, and precision were 78.8%, 90.4%, and 89.1%, respectively. Conclusion Machine learning-based unenhanced CT texture analysis might be a potential method for predicting the BAP1 mutation status of ccRCCs.

Publisher

SAGE Publications

Subject

Radiology Nuclear Medicine and imaging,General Medicine,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3