Affiliation:
1. Department of Radiology, Istanbul Training and Research Hospital, Istanbul, Turkey
2. Department of Radiology, Buyukcekmece Mimar Sinan State Hospital, Istanbul, Turkey
3. Department of Radiology, Koc University School of Medicine, Koc University Hospital, Istanbul, Turkey
Abstract
Background BRCA1-associated protein 1 (BAP1) mutation is an unfavorable factor for overall survival in patients with clear cell renal cell carcinoma (ccRCC). Radiomics literature about BAP1 mutation lacks papers that consider the reliability of texture features in their workflow. Purpose Using texture features with a high inter-observer agreement, we aimed to develop and internally validate a machine learning-based radiomic model for predicting the BAP1 mutation status of ccRCCs. Material and Methods For this retrospective study, 65 ccRCCs were included from a public database. Texture features were extracted from unenhanced computed tomography (CT) images, using two-dimensional manual segmentation. Dimension reduction was done in three steps: (i) inter-observer agreement analysis; (ii) collinearity analysis; and (iii) feature selection. The machine learning classifier was random forest. The model was validated using 10-fold nested cross-validation. The reference standard was the BAP1 mutation status. Results Out of 744 features, 468 had an excellent inter-observer agreement. After the collinearity analysis, the number of features decreased to 17. Finally, the wrapper-based algorithm selected six features. Using selected features, the random forest correctly classified 84.6% of the labelled slices regarding BAP1 mutation status with an area under the receiver operating characteristic curve of 0.897. For predicting ccRCCs with BAP1 mutation, the sensitivity, specificity, and precision were 90.4%, 78.8%, and 81%, respectively. For predicting ccRCCs without BAP1 mutation, the sensitivity, specificity, and precision were 78.8%, 90.4%, and 89.1%, respectively. Conclusion Machine learning-based unenhanced CT texture analysis might be a potential method for predicting the BAP1 mutation status of ccRCCs.
Subject
Radiology Nuclear Medicine and imaging,General Medicine,Radiological and Ultrasound Technology
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献