Identifying cardiomegaly in chest X-rays: a cross-sectional study of evaluation and comparison between different transfer learning methods

Author:

Bougias Haralabos1,Georgiadou Eleni2,Malamateniou Christina3,Stogiannos Nikolaos34ORCID

Affiliation:

1. Department of Clinical Radiology, Ioannina University Hospital, Ioannina, Greece

2. Department of Medical Imaging, Metaxa Anticancer Hospital, Athens, Greece

3. Division of Midwifery and Radiography, School of Health Sciences, City University of London, London, UK

4. Department of Medical Imaging, Corfu General Hospital, Corfu, Greece

Abstract

Background Cardiomegaly is a relatively common incidental finding on chest X-rays; if left untreated, it can result in significant complications. Using Artificial Intelligence for diagnosing cardiomegaly could be beneficial, as this pathology may be underreported, or overlooked, especially in busy or under-staffed settings. Purpose To explore the feasibility of applying four different transfer learning methods to identify the presence of cardiomegaly in chest X-rays and to compare their diagnostic performance using the radiologists’ report as the gold standard. Material and Methods Two thousand chest X-rays were utilized in the current study: 1000 were normal and 1000 had confirmed cardiomegaly. Of these exams, 80% were used for training and 20% as a holdout test dataset. A total of 2048 deep features were extracted using Google’s Inception V3, VGG16, VGG19, and SqueezeNet networks. A logistic regression algorithm optimized in regularization terms was used to classify chest X-rays into those with presence or absence of cardiomegaly. Results Diagnostic accuracy is reported by means of sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV), with the VGG19 network providing the best values of sensitivity (84%), specificity (83%), PPV (83%), NPV (84%), and overall accuracy (84,5%). The other networks presented sensitivity at 64.1%–82%, specificity at 77.1%–81.1%, PPV at 74%–81.4%, NPV at 68%–82%, and overall accuracy at 71%–81.3%. Conclusion Deep learning using transfer learning methods based on VGG19 network can be used for the automatic detection of cardiomegaly on chest X-ray images. However, further validation and training of each method is required before application to clinical cases.

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,General Medicine,Radiological and Ultrasound Technology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3