Affiliation:
1. Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
Abstract
Background The 2021 World Health Organization (WHO) classification considers a histological low grade glioma with specific molecular characteristics as molecular glioblastoma (mGBM). Accurate identification of mGBM will aid in risk stratification of glioma patients. Purpose To explore the value of machine learning models based on magnetic resonance imaging (MRI) radiomics features in predicting mGBM. Material and Methods In total, 166 patients histologically diagnosed as low-grade diffuse glioma (WHO II and III) were included in the study. Fifty-three cases were reclassified as mGBM based on molecular status. Four dimensionality reduction methods including distance correlation (DC), gradient boosted decision tree (GBDT), least absolute shrinkage and selection operator (LASSO) and minimal redundancy maximal relevance (MRMR) were used to select the optimal signatures. Six machine learning algorithms including support vector machine (SVM), linear discriminant analysis (LDA), neural network (NN), logistic regression (LR), K-nearest neighbour (KNN) and decision tree (DT) were used to develop the classifiers. The relative SD was used to evaluate the stability of the models, and the area under the curve values in the independent test group were used to evaluate their performances. Results NN_DC was determined as the optimal classifier due to the highest area under the curve of 0.891 in the test group. The classification accuracy, sensitivity, specificity, positive predictive value and negative predictive value of NN_DC were 0.915, 0.842, 0.950, 0.889 and 0.927, respectively. Conclusion Machine learning models can predict mGBM non-invasively, which may help to develop personalized treatment strategies for neurosurgeons and provide an effective tool for accurate stratification in clinical trials.
Subject
Radiology, Nuclear Medicine and imaging,General Medicine,Radiological and Ultrasound Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献