The diagnosis performance of convolutional neural network in the detection of pulmonary nodules: a systematic review and meta-analysis

Author:

Zhang Xinyue1ORCID,Liu Bo1,Liu Kefu2,Wang Lina1

Affiliation:

1. Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Department of Epidemiology & Biostatistics, School of Public Health, Southeast University, Nanjing, China

2. Department of radiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China

Abstract

Background Pulmonary nodules are an early imaging indication of lung cancer, and early detection of pulmonary nodules can improve the prognosis of lung cancer. As one of the applications of machine learning, the convolutional neural network (CNN) applied to computed tomography (CT) imaging data improves the accuracy of diagnosis, but the results could be more consistent. Purpose To evaluate the diagnostic performance of CNN in assisting in detecting pulmonary nodules in CT images. Material and Methods PubMed, Cochrane Library, Web of Science, Elsevier, CNKI and Wanfang databases were systematically retrieved before 30 April 2023. Two reviewers searched and checked the full text of articles that might meet the criteria. The reference criteria are joint diagnoses by experienced physicians. The pooled sensitivity, specificity and the area under the summary receiver operating characteristic curve (AUC) were calculated by a random-effects model. Meta-regression analysis was performed to explore potential sources of heterogeneity. Results Twenty-six studies were included in this meta-analysis, involving 2,391,702 regions of interest, comprising segmented images with a few wide pixels. The combined sensitivity and specificity values of the CNN model in detecting pulmonary nodules were 0.93 and 0.95, respectively. The pooled diagnostic odds ratio was 291. The AUC was 0.98. There was heterogeneity in sensitivity and specificity among the studies. The results suggested that data sources, pretreatment methods, reconstruction slice thickness, population source and locality might contribute to the heterogeneity of these eligible studies. Conclusion The CNN model can be a valuable diagnostic tool with high accuracy in detecting pulmonary nodules.

Funder

The Scientific Research Project of Gusu School in Nanjing Medical University

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,General Medicine,Radiological and Ultrasound Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3