Multiple sclerosis versus cerebral small vessel disease in MRI: a practical approach using qualitative and quantitative signal intensity differences in white matter lesions

Author:

Yuzkan Sabahattin1ORCID,Balsak Serdar2,Cinkir Ufuk3,Kocak Burak1ORCID

Affiliation:

1. Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey

2. Department of Radiology, Bezmialem Vakif University Hospital, Istanbul, Turkey

3. Department of Neurology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey

Abstract

Background Multiple sclerosis (MS) and cerebral small vessel disease (CSVD) are relatively common radiological entities that occasionally necessitate differential diagnosis. Purpose To investigate the differences in magnetic resonance imaging (MRI) signal intensity (SI) between MS and CSVD related white matter lesions. Material and Methods On 1.5-T and 3-T MRI scanners, 50 patients with MS (380 lesions) and 50 patients with CSVD (395 lesions) were retrospectively evaluated. Visual inspection was used to conduct qualitative analysis on diffusion-weighted imaging (DWI)_b1000 to determine relative signal intensity. The thalamus served as the reference for quantitative analysis based on SI ratio (SIR). The statistical analysis utilized univariable and multivariable methods. There were analyses of patient and lesion datasets. On a dataset restricted by age (30–50 years), additional evaluations, including unsupervised fuzzy c-means clustering, were performed. Results Using both quantitative and qualitative features, the optimal model achieved a 100% accuracy, sensitivity, and specificity with an area under the curve (AUC) of 1 in patient-wise analysis. With an AUC of 0.984, the best model achieved a 94% accuracy, sensitivity, and specificity when using only quantitative features. The model's accuracy, sensitivity, and specificity were 91.9%, 84.6%, and 95.8%, respectively, when using the age-restricted dataset. Independent predictors were T2_SIR_max (optimal cutoff=2.1) and DWI_b1000_SIR_mean (optimal cutoff=1.1). Clustering also performed well with an accuracy, sensitivity, and specificity of 86.5%, 70.6%, and 100%, respectively, in the age-restricted dataset. Conclusion SI characteristics derived from DWI_b1000 and T2-weighted-based MRI demonstrate excellent performance in differentiating white matter lesions caused by MS and CSVD.

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,General Medicine,Radiological and Ultrasound Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3