Computed tomography arthrography of the shoulder with tin filter-based spectral shaping at 100 kV and 140 kV

Author:

Choi Yun Seok1,Choo Hye Jung1ORCID,Lee Sun Joo1,Kim Dong Wook1ORCID,Han Ji-yeon1,Kim Da Som1

Affiliation:

1. Department of Radiology, Inje University Busan Paik Hospital, Busan, Republic of Korea

Abstract

Background Tin filter-based spectral shaping has been used for low-dose and ultra-low-dose computed tomography (CT) in several body parts. However, studies of shoulder CT arthrography with spectral shaping are limited. Purpose To investigate image quality and radiation dose of shoulder CT arthrography with tin filter-based spectral shaping at 100 kV (Sn 100 kV) and 140 kV (Sn 140 kV) in comparison with the conventional protocol. Material and Methods Ninety-nine shoulder CT arthrographies with protocols of Sn 100 kV (n = 32), Sn 140 kV (n = 25), and conventional 120 kV (n = 42) were retrospectively evaluated. Qualitative image quality, CT attenuations of intra-articular contrast mixture and tissues, background noise, contrast-to-noise ratios (CNRs), and figures of merit were assessed. Radiation doses were compared. Results CT arthrographies with Sn 100 kV and Sn 140 kV yielded approximately 70% and 60% radiation dose reduction, respectively, compared with the conventional 120 kV ( P < 0.001). Qualitative image noise and quantitative background noise of Sn 100 kV and Sn 140 kV were significantly less than those of the conventional protocol. Qualitative image contrast, CT attenuations of intra-articular contrast mixture and tissues, and CNRs for Sn 100 were similar to those of the conventional 120 kV. However, Sn 140 kV showed significantly lower qualitative contrast and CNRs than 120 kV. Sn 100 kV was the most dose efficient among the three protocols. Conclusion Shoulder CT arthrography with Sn 100 kV substantially reduced radiation dose and image noise and maintained image contrast, compared with the conventional protocol.

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,General Medicine,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3