Complete coverage problem of multiple robots with different velocities

Author:

Li Lin1ORCID,Shi Dianxi23,Jin Songchang23,Kang Ying4,Xue Chao3,Zhou Xing5,Liu Hengzhu1,Yu XiaoXiao1

Affiliation:

1. College of Computer, National University of Defense Technology, Changsha, Hunan, China

2. Artificial Intelligence Research Center (AIRC), Defense Innovation Institute, Beijing, China

3. Tianjin Artificial Intelligence Innovation Center (TAIIC), Tianjin, China

4. People’s Liberation Army of China, Changchun, China

5. College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, China

Abstract

Complete coverage, which is integral to many robotic applications, aims to cover an area as quickly as possible. In such tasks, employing multiple robots can reduce the overall coverage time by appropriate task allocation. Several multi-robot coverage approaches divide the environment into balanced subareas and minimize the maximum subarea of all robots. However, balanced coverage in many situations, such as in the cases of robots with different velocities and heterogeneous multi-robot systems, may have inefficient results. This study addresses the unbalanced complete coverage problem of multiple robots with different velocities for a known environment. First, we propose a novel credit model to transform the unbalanced coverage problem into a set of single-objective optimization problems, which can find a combinational optimal solution by optimizing each separate objective function of the single-objective optimization problem to alleviate the computational complexity. Then, we propose a credit-based algorithm composed of a cyclic region growth algorithm and a region fine-tuning algorithm. The cyclic region growth algorithm finds an initial solution to the single-objective optimization problems set by a regional growth strategy with multiple restricts, whereas the region fine-tuning algorithm reallocates the tasks of the partitions with too many tasks to the partitions with too few tasks by constructing a search tree, thereby converging the initial solution to the optimal solution. Simulation results indicate that compared with conventional multi-robot complete coverage problem algorithms, the credit-based algorithm can obtain the optimal solution with the increased number of robots and enlarged size of the mission environment.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3