Towards cloud-native simulations – lessons learned from the front-line of cloud computing

Author:

Kratzke Nane1ORCID,Siegfried Robert2

Affiliation:

1. Department for Electrical Engineering and Computer Science, Lübeck University of Applied Sciences, Germany

2. aditerna GmbH, Germany

Abstract

Cloud computing can be a game-changer for computationally intensive tasks like simulations. The computational power of Amazon, Google, or Microsoft is even available to a single researcher. However, the pay-as-you-go cost model of cloud computing influences how cloud-native systems are being built. We transfer these insights to the simulation domain. The major contributions of this paper are twofold: (A) we propose a cloud-native simulation stack and (B) derive expectable software engineering trends for cloud-native simulation services. Our insights are based on systematic mapping studies on cloud-native applications, a review of cloud standards, action research activities with cloud engineering practitioners, and corresponding software prototyping activities. Two major trends have dominated cloud computing over the last 10 years. The size of deployment units has been minimized and corresponding architectural styles prefer more fine-grained service decompositions of independently deployable and horizontally scalable services. We forecast similar trends for cloud-native simulation architectures. These similar trends should make cloud-native simulation services more microservice-like, which are composable but just “simulate one thing well.” However, merely transferring existing simulation models to the cloud can result in significantly higher costs. One critical insight of our (and other) research is that cloud-native systems should follow cloud-native architecture principles to leverage the most out of the pay-as-you-go cost model.

Funder

German Federal Ministry of Education and Research

Publisher

SAGE Publications

Subject

Engineering (miscellaneous),Modelling and Simulation

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3