Modeling efficiency and safety on an aircraft carrier flight deck

Author:

Cummings Mary L1ORCID,Li Songpo2,Han Hong2ORCID,Aguilar Carlos3

Affiliation:

1. Department of Mechanical Engineering, College of Engineering and Computing, George Mason University, USA

2. Duke University, USA

3. Consultant, USA

Abstract

Aircraft carrier flight decks present high-risk mission-critical environments that need to be both efficient and safe. The concept of optimal manning, having just enough people to do the job safely and efficiently, is paramount in order to put the least amount of people at risk while not sacrificing mission effectiveness. To this end, an agent-based model, the optimal manning simulation (OMS) was developed, which specifically looks at the launch process of the flight deck in order to quantify the risk and efficiency of people working on the flight deck. OMS models different classes of crew members on the flight deck, aircraft, and resources like catapults. OMS measures safety through collisions or near-collisions of people and aircraft, as well as how long it takes to execute a launch cycle, the primary efficiency metric. Validation and sensitivity analyses provide confidence in OMS results. To demonstrate its utility, OMS is also used to predict how the future introduction of unmanned aerial vehicles could impact staffing and performance measures.

Funder

Office of Naval Research

Publisher

SAGE Publications

Subject

Engineering (miscellaneous),Modeling and Simulation

Reference15 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Assessment of Explosive and Fire Risks from Fighter Jet Collision with Aircraft Carrier;International Journal of Aeronautical and Space Sciences;2024-08-31

2. Assessing safety through agent-based simulation for aircraft carrier flight decks;Proceedings of the Human Factors and Ergonomics Society Annual Meeting;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3