Analysis of user pairing non-orthogonal multiple access network using deep Q-network algorithm for defense applications

Author:

Ravi Shankar1ORCID,Kulkarni Gopal Ramchandra2,Ray Samrat3,Ravisankar Malladi4,krishnan V Gokula5,Chakravarthy D S K6ORCID

Affiliation:

1. Department of ECE, International Association of Engineers, China

2. Department of Electrical Engineering, Shivaji University, India

3. Institute of Industrial Management, Economics and Trade Peter, Russia

4. SR Gudlavalleru Engineering College, India

5. Department of Computer Science and Information Technology, CVR College of Engineering, India

6. Virtusa Consulting Pvt. Ltd., India

Abstract

Non-orthogonal multiple access (NOMA) networks play an important role in defense communication scenarios. Deep learning (DL)-based solutions are being considered as viable ways to solve the issues in fifth-generation (5G) and beyond 5G (B5G) wireless networks, since they can provide a more realistic solution in the real-world wireless environment. In this work, we consider the deep Q-Network (DQN) algorithm-based user pairing downlink (D/L) NOMA network. We have applied the convex optimization (CO) technique and optimized the sum rate of all the wireless users. First, the near-far (N-F) pairing and near-near and far-far (N-N and F-F) pairing strategies are investigated for the multiple numbers of users, and a closed-form (CF) expression of the achievable rate is derived. After that, the optimal power allocation (OPA) factors are derived using the CO technique. Through simulations, it has been demonstrated that the DQN algorithms perform much better than the deep reinforcement learning (DRL) and conventional orthogonal frequency-division multiple access (OFDMA) schemes. The sum-rate performance significantly increases with OPA factors. The simulation results are in close agreement with the analytical results.

Publisher

SAGE Publications

Subject

Engineering (miscellaneous),Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3