Control of steering wheel idle jitter based on optimization of engine suspension system with verifications using multi-sensor measurement

Author:

He Shuilong12,Chen Binqiang3,Jiang Zhansi1,Wang Yanxue1,Liu Fuyun1

Affiliation:

1. School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin, P.R. China

2. Dongfeng Liuzhou Motor Co., Ltd., Liuzhou, P.R. China

3. School of Aerospace Engineering, Xiamen University, Xiamen, P.R. China

Abstract

Strong steering wheel jitter during idling states of the engine can seriously deteriorate the driving comfort as well as the driving safety. The powertrain suspension system can be considered as the only essential path for the transmission of vibrations from the engine to the vehicle cab. Its vibration isolation performance directly affects the severity of vibrations on the steering wheel. In this article, aiming at solving the problem of a certain type of commercial vehicle’s steering wheel with strong idle jitter at the idle state, the intrinsic characteristics and vibration isolation performances of the powertrain suspension system were studied in detail. A multi-sensor-based measurement strategy was utilized to evaluate the idle jitter severity of the steering wheel. In order to improve the indicators of the decoupling degree, the vibration transmissibility, and the resonant frequency distributions of the engine suspension system, an optimization model of engine suspension system was established. Parameters of the optimized suspension system were obtained by multi-objective particle swarm optimization. Finally, the effectiveness and feasibility of the optimization algorithm to solve the problem of the vehicle’s steering wheel jitter at idle states were verified through a test using multiple acceleration sensors, which has practical values in the engineering field.

Funder

Basic ability promotion project for young and middle-aged teachers in Guangxi Province

Project of scientific research and technology development in Liuzhou

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3