VaSe-MRP: Velocity-aware and stability-estimation–based multi-path routing protocol in flying ad hoc network

Author:

Ma Zhongyu123ORCID,Guo Qun456,Ma Ji7,Zhang Zhe1,Ma Hongfeng12,Peng Linru1,Li Ying1

Affiliation:

1. School of Electronic Information Engineering, Lanzhou Institute of Technology, Lanzhou, China

2. Gansu Engineering Laboratory for Resource and Environment Informationization, Lanzhou Institute of Technology, Lanzhou, China

3. Gansu Engineering Research Center for Image Recognition and Data Analysis, Lanzhou Institute of Technology, Lanzhou, China

4. College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou, China

5. Key Laboratory of Gansu Advanced Control for Industrial Processes, Lanzhou University of Technology, Lanzhou, China

6. National Demonstration Center for Experimental Electrical and Control Engineering Education, Lanzhou University of Technology, Lanzhou, China

7. Jozef Stefan International Postgraduate School, Jamova cesta, Ljubljana, Slovenia

Abstract

Flying ad hoc network is widely used in many military and civilian scenarios. Compared with mobile ad hoc network and vehicular ad hoc network, flying ad hoc network holds some special characteristics such as high mobility, long-distance communication, and sparse node-deployment, which cause an important challenge in the design of routing protocols. In this article, a velocity-aware and stability-estimation–based multi-path routing protocol is proposed for flying ad hoc network. The protocol is mainly composed of two important parts, which are the routing discovery mechanism and routing maintenance mechanism. In routing discovery process, the routing discovery request packet only can be forwarded by the reliable node, which is decided by the calculation of co-direction degree, then the routing overhead is reduced at some extent. Noticeably, the correlation of the survival duration between adjacent links is fully considered, which is very important to the path stability criteria. In routing maintenance progress, a path similarity and path remaining survival duration–based multi-path selection mechanism is proposed. The performance superiority of velocity-aware and stability-estimation–based multi-path routing protocol is also demonstrated by extensive simulations. The results show that velocity-aware and stability-estimation–based multi-path routing protocol is much better than other existing protocols in terms of network throughput, average delay of data transmission, routing overhead, and the convergence time of the routing discovery.

Funder

Lanzhou Science and Technology Plan Project

National Natural Science Foundation of China

Youth Natural Science Foundations of Gansu

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3