Intelligent motivation framework based on Q-network for multiple agents in Internet of Things simulations

Author:

Nguyen Hieu Trong1,Chu Phuong Minh1,Park Jisun1,Sung Yunsick1,Cho Kyungeun1ORCID

Affiliation:

1. Department of Multimedia Engineering, Dongguk University, Seoul, Republic of Korea

Abstract

Internet of Things simulations play significant roles in the diverse kinds of activities in our daily lives and have been extensively researched. Creating and controlling virtual agents in three-dimensional Internet of Things simulations is a key technology for achieving realism in three-dimensional simulations. Given that traditional virtual agent-based approaches have limitations for realism, it is necessary to improve the realism of three-dimensional Internet of Things simulations. This article proposes a Q-Network-based motivation framework that applies a Q-Network to select motivations from desires and hierarchical task network planning to execute actions based on goals of the selected motivations. The desires are to be identified and calculated based on states. Selected motivations will be chosen to determine the goals that agents must achieve. In the experiments, the proposed framework achieved an average accuracy of up to 85.5% when the Q-Network-based motivation model was trained. To verify the Q-Network-based motivation framework, a traditional Q-learning is also applied in the three-dimensional virtual environment. Comparing the results of the two frameworks, the Q-Network-based motivation framework shows better results than those of traditional Q-learning, as the accuracy of the Q-Network-based motivation is higher by 15.58%. The proposed framework can be applied to the diverse kinds of Internet of Things systems such as a training autonomous vehicle. Moreover, the proposed framework can generate big data on animal behaviors for other training systems.

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Reference26 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3