A new approach of anomaly detection in wireless sensor networks using support vector data description

Author:

Feng Zhen12,Fu Jingqi1,Du Dajun1,Li Fuqiang1,Sun Sizhou1

Affiliation:

1. School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China

2. College of Mechatronics and Control Engineering, Hubei Normal University, Huangshi, China

Abstract

Anomaly detection is an important challenge in wireless sensor networks for some applications, which require efficient, accurate, and timely data analysis to facilitate critical decision making and situation awareness. Support vector data description is well applied to anomaly detection using a very attractive kernel method. However, it has a high computational complexity since the standard version of support vector data description needs to solve quadratic programming problem. In this article, an improved method on the basis of support vector data description is proposed, which reduces the computational complexity and is used for anomaly detection in energy-constraint wireless sensor networks. The main idea is to improve the computational complexity from the training stage and the decision-making stage. First, the strategy of training sample reduction is used to cut back the number of samples and then the sequential minimal optimization algorithm based on the second-order approximation is implemented on the sample set to achieve the goal of reducing the training time. Second, through the analysis of the decision function, the pre-image in the original space corresponding to the center of hyper-sphere in kernel feature space can be obtained. The decision complexity is reduced from O( l) to O(1) using the pre-image. Eventually, the experimental results on several benchmark datasets and real wireless sensor networks datasets demonstrate that the proposed method can not only guarantee detection accuracy but also reduce time complexity.

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3