A navigation satellite selection algorithm for optimized positioning based on Gibbs sampler

Author:

Xia Na12ORCID,Zhi Qinan1,He Menghua2,Hong Yunqing2,Du Huazheng2

Affiliation:

1. State Key Laboratory of Satellite Navigation System and Equipment Technology, Shijiazhuang, China

2. School of Computer Science and Information Engineering, Hefei University of Technology, Hefei, Anhui, China

Abstract

In various applications of satellite navigation and positioning, it is a key topic to select suitable satellites for positioning solutions to reduce the computational burden of the receiver in satellite selection system. Moreover, in order to reduce the processing burden of receivers, the satellite selection algorithm based on Gibbs sampler is proposed. First, the visible satellites are randomly sampled and divided into a group. The group is regarded as an initial combination selection scheme. Then, the geometric dilution of precision is chosen as an objective function to evaluate the scheme’s quality. In addition, the scheme is updated by the conditional probability distribution model of the Gibbs sampler algorithm, and it gradually approaches the global optimal solution of the satellite combination with better geometric distribution of the space satellite. Furthermore, an “adaptive perturbation” strategy is introduced to improve the global searching ability of the algorithm. Finally, the extensive experimental results demonstrate that when the number of selected satellite is more than 6, the time that the proposed algorithm with the improvement of “adaptive perturbation” takes to select satellite once is 43.7% of the time that the primitive Gibbs sampler algorithm takes. And its solutions are always 0.1 smaller than the related algorithms in geometric dilution of precision value. Therefore, the proposed algorithm can be considered as a promising candidate for satellite navigation application systems.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3