Improvement of Non-radioactive In Situ Hybridization in Human Airway Tissues: Use of PCR-generated Templates for Synthesis of Probes and an Antibody Sandwich Technique for Detection of Hybridization

Author:

Divjak Maja1,Glare Eric M.1,Walters E. Haydn12

Affiliation:

1. Department of Respiratory Medicine, Alfred Hospital and Monash University Medical School, Melbourne, Australia

2. Discipline of Medicine, University of Tasmania Medical School, Royal Hobart Hospital, Hobart, Australia

Abstract

We describe the use of non-traditional methods of probe synthesis and quantification and detection of hybridization that appreciably improved non-radioactive in situ hybridization (ISH) in human airway tissue. To avoid the problems of bacterial cloning, plasmid digestion, and probe hydrolysis, we synthesised complementary RNA probes (riboprobes) for ISH from PCR-generated DNA. DNA template was produced by nested PCR incorporation of T7 and SP6 RNA polymerase promoters. We then compared the efficiency of in vitro transcription from PCR-generated template with traditional plasmid template by quantifying the relative probe fluorescence in denaturing gels. Transcription with SP6 or T7 polymerase in either orientation produced TNF riboprobes from a single PCR-generated template more efficiently than from plasmid, providing there were no primer hairpin loops. Fluorescence quantification enabled equal amounts of probe label to be used in ISH, eliminating signals from the sense probe and demonstrating that probes transcribed from PCR templates were as sensitive as hydrolyzed probe transcribed from plasmid. Detection of ISH by a conventional anti-hapten, alkaline phosphatase-based technique was found to cause tissue damage due to extended substrate incubation at high pH. We therefore developed a four-layer, avidin-biotin-peroxidase technique that afforded greater sensitivity, allowing brief substrate incubation and resulting in structural preservation of tissue.

Publisher

SAGE Publications

Subject

Histology,Anatomy

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3