Phosphorescent Platinum/Palladium Coproporphyrins for Time-resolved Luminescence Microscopy

Author:

de Haas Richard R.1,van Gijlswijk Rob P.M.1,van der Tol Erik B.2,Veuskens Jacky3,van Gijssel Hilde E.4,Tijdens Roeline B.4,Bonnet Jan1,Verwoerd Nico P.1,Tanke Hans J.1

Affiliation:

1. Laboratory for Cytochemistry and Cytometry, Leiden University Medical Center, Leiden

2. Department of Organic Chemistry, University of Amsterdam, Amsterdam

3. Institute for Molecular Cell Biology, University of Amsterdam

4. Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Sylvius Laboratories, University of Leiden, Leiden, The Netherlands

Abstract

Streptavidin and antibodies were labeled with phosphorescent platinum and palladium coproporphyrin. The optimal conjugates were selected on the basis of spectroscopic analysis (molar extinction coefficient, quantum yield, lifetime) and using ELISA assays to determine the retention of biological activity and immunospecificity. They were subsequently tested for the detection of prostate-specific antigen, glucagon, human androgen receptor, p53, and glutathione transferase in strongly autofluorescent tissues. Furthermore, platinum and palladium coproporphyrin-labeled dUTPs were synthesized for the enzymatic labeling of DNA probes. Porphyrin-labeled DNA probes and porphyrin-labeled streptavidin conjugates were evaluated for DNA in situ hybridization on metaphase spreads, using direct and indirect methods, respectively. The developed in situ detection technology is shown to be applicable not only in mammals but also in plants. A modular-based time-resolved microscope was constructed and used for the evaluation of porphyrinstained samples. The time-resolved module was found suitable for detection of antigens and DNA targets in an autofluorescent environment. Higher image contrasts were generally obtained in comparison with conventional detection systems (e.g., fourfold improvement in detection of glutathione transferase).

Publisher

SAGE Publications

Subject

Histology,Anatomy

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3