An XGBoost Machine Learning Based Model for Predicting Ki-67 Value ≥ 15% in T2NXM0 Stage Primary Breast Cancer Receiving Neoadjuvant Chemotherapy Using Clinical Data and Delta-Radiomic Features on Ultrasound Images and Overall Survival Analysis: A 5-Year Postoperative Follow-Up Study

Author:

Lu Yang1,Yang Fei1,Tao Yichao1,An Pang2ORCID

Affiliation:

1. Department of Ultrasound, The Central Hospital of Xiaogan, Xiaogan, Hubei, China

2. Department of Radiology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China

Abstract

Objective: To establish a model based on clinical and delta-radiomic features within ultrasound images using XGBoost machine learning to predict proliferation-associated nuclear antigen Ki-67 value ≥ 15% in T2NXM0 stage primary breast cancer (BC). Method: Data were collected from 228 randomly selected BC patients who received ultrasound screening and postoperative pathologic assessment from April 2015 to September 2018. The patients were classified into the study group (n = 80) and control group (n = 148), and the data were apportioned into the training set and test set at a 7:3 ratio based on time intervals. In the training set, crucial factors were identified from clinical features and grayscale and delta-radiomic features within ultrasound images, by using the chi-square test, t-test, and rank-sum test. The clinical model, imaging model, and combined model were built using multivariate logistic regression, respectively. The model's predictive performance and clinical net benefit were assessed using DeLong's method and decision curve analysis. Meanwhile, an XGBoost algorithm is used to establish a prediction model to verify the above results. Results: The crucial factors affecting Ki-67 value ≥ 15% included BMI, lymph node metastases, BC volume, CA153, pathology type, tumor boundaries, tumor morphology, elastography score, and delta-radscore. The predictive performance of the combined model [AUC 0.857, OR 0.0290, 95% CI 0.793-0.908] was considerably improved on the training set than the clinical model [AUC 0.724, OR 0.0422, 95% CI 0.648-0.792] and the imaging model [AUC 0.798, OR 0.0355, 95% CI 0.727-0.857]. The decision curve analysis also confirmed that the combined model delivered a higher clinical net benefit, and the verification on the test set yielded similar results. The nomogram and the calibration curve plotted based on the combined model achieved satisfactory clinical effects. The SHAP value of the XGBoost algorithm also confirmed that lymph node metastasis, BC volume, elastography score, and delta-radscore are the best independent factors for predicting BC Ki-67 value ≥ 15%. Conclusion: The XGBoost machine learning-based combined model integrating clinical features and delta-radiomic features on ultrasound images was able to predict the Ki-67 value ≥ 15% in an efficient and noninvasive manner, providing important clues for clinical decision-making and follow-up in BC.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3