Nucleus segmentation and classification using residual SE-UNet and feature concatenation approach incervical cytopathology cell images

Author:

Chowdary G Jignesh1,G Suganya2,M Premalatha2,Yogarajah Pratheepan3ORCID

Affiliation:

1. Stony Brook University, New York, US

2. Vellore Institute of Technology, Chennai, India

3. Ulster University, Northern Ireland, UK

Abstract

Introduction: Pap smear is considered to be the primary examination for the diagnosis of cervical cancer. But the analysis of pap smear slides is a time-consuming task and tedious as it requires manual intervention. The diagnostic efficiency depends on the medical expertise of the pathologist, and human error often hinders the diagnosis. Automated segmentation and classification of cervical nuclei will help diagnose cervical cancer in earlier stages. Materials and Methods: The proposed methodology includes three models: a Residual-Squeeze-and-Excitation-module based segmentation model, a fusion-based feature extraction model, and a Multi-layer Perceptron classification model. In the fusion-based feature extraction model, three sets of deep features are extracted from these segmented nuclei using the pre-trained and fine-tuned VGG19, VGG-F, and CaffeNet models, and two hand-crafted descriptors, Bag-of-Features and Linear-Binary-Patterns, are extracted for each image. For this work, Herlev, SIPaKMeD, and ISBI2014 datasets are used for evaluation. The Herlev datasetis used for evaluating both segmentation and classification models. Whereas the SIPaKMeD and ISBI2014 are used for evaluating the classification model, and the segmentation model respectively. Results: The segmentation network enhanced the precision and ZSI by 2.04%, and 2.00% on the Herlev dataset, and the precision and recall by 0.68%, and 2.59% on the ISBI2014 dataset. The classification approach enhanced the accuracy, recall, and specificity by 0.59%, 0.47%, and 1.15% on the Herlev dataset, and by 0.02%, 0.15%, and 0.22% on the SIPaKMed dataset. Conclusion: The experiments demonstrate that the proposed work achieves promising performance on segmentation and classification in cervical cytopathology cell images..

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3